Just like we did in lesson 6, we are again going to harmonize the C major scale except this time, rather than just using triads (3 notes) we are going to use 4 notes.
To harmonize the scale, we simply take the 1st 3rd, 5th and 7th notes of the C scale and spell them out.
C D E F G A B C D E F G A B C
C E G B
Then we start again from the 2nd note in the scale and count the 1st, 3rd , 5th and 7th notes from that point.
C D E F G A B C D E F G A B C
D F A C
Again from the 3rd note in the scale, count the 1st, 3rd , 5th and 7th note from that point.
C D E F G A B C D E F G A B C
E G B D
Continue to do this all the way to the 7th note in the scale and you end up with:
C E G B
D F A C
E G B D
F A C E
G B D F
A C E G
B D F A
In lesson 6, we saw that C E G (1 3 5) made up the major chord in the key of C. Here, we have added the 7th note (B) from the scale.
The result (1 3 5 7) is the CMaj7 chord.
So, what are all the other ones? Lets start with D F A C
First, lets spell out the major scale that starts on D. (see lesson 3)
D E F# G A B C# D
The scales 3rd note is F#. Our 3rd note is F. The note F is a flatted 3rd (b3) in the D major scale. We know from lesson 6 that D F A = minor triad.
The 7th note C is a flatted 7th (b7) note from the scale.
1 b3 5 b7 = minor 7
So the resulting chord is a Dmin7 chord.
Lets look at E G B D
Again, lets spell out the major scale that starts on E.
E F# G# A B C# D# E
The scales 3rd note is G#. Our 3rd note is G. The note G is a flatted 3rd (b3) in the E major scale.
We know from lesson 6 that E G B = minor triad
Again, the 7th note D is a flatted 7th (b7) note from the scale.
1 b3 5 b7 = minor7
So the resulting chord is a Emin7 chord.
Using the same procedure all the way up the scale, we end up with:
F A C E – FMajor7
G B D F – G7
A C E G – Amin7
B D F A – Bmin7b5 (also known as B half diminished)
If we put them all together now, we end up with:
Notes in the Cmajor scale | Degree of scale | Chord |
C E G B | 1 3 5 7 | Major 7 |
D F A C | 1 b3 5 b7 | Minor 7 |
E G B D | 1 b3 5 b7 | Minor 7 |
F A C E | 1 3 5 7 | Major 7 |
G B D F | 1 3 5 b7 | 7th – (or dominant 7th) |
A C E G | 1 b3 5 b7 | Minor 7 |
B D F A |
1 b3 b5 b7 |
Minor7b5 –(or half diminished) |
This order of chords will result regardless which major scale you harmonize. Knowing this is very useful for several reasons.
1) If you are asked to play a 2 5 1 chord progression in any key, with a little thought, you now can.
With the added 7th, a 2 5 1 chord progression in the key of C is Dmin7, G7 and C Maj7.
Exercise: What is a 2 5 1 in the key of G?
2) Another reason is that if you want to transpose a song from its existing key to another that better matches your vocal range, you can do this as well. Suppose that a song on a chart has the following chord progression in the key of C.
C Maj7 G7 Amin7 F Maj7
Now suppose that you are way more comfortable singing in the key of D ( C is just a little to low for you ). To transpose this, we simply determine what number in the key of C these chords represent. We find that:
C Maj7 G7 Amin7 F Maj7 = 1 5 6 4 in the key of C.
Now apply those numbers to the key of D and you will find that:
1 5 6 4 in the key of D = D Maj7 A7 Bmin7 G Maj7
Exercise: Transpose the progression C Maj7 G 7 A Min7 F Maj7 into the key of E.
3) From the standpoint of improvisation, it is very useful to know the relationship between chords and scales. We won’t really get into this now other than to say that if you played the 1 5 6 4 progression we just mentioned in the key of C, the C Major scale can be played over that whole chord progression as these chords are all made up of notes from that scale. Much more on this later in the lesson on “the modes”.
© Synaptic Systems Inc., 1999
Speak Your Mind